Neighborhood Preserving Convex Nonnegative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Neighborhood Preserving Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been widely used in computer vision and pattern recognition. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally leads to parts-based and non-subtractive representation. In this paper, we present a neighborhood preserving nonnegative matrix factorization (NPNMF) for dimensionality red...
متن کاملLocality Preserving Nonnegative Matrix Factorization
Matrix factorization techniques have been frequently applied in information processing tasks. Among them, Non-negative Matrix Factorization (NMF) have received considerable attentions due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts-based in human brain. On the other hand, from geometric perspective the data is usually sampl...
متن کاملConvex Nonnegative Matrix Factorization with Rank-1 Update for Clustering
In convex nonnegative matrix factorization, the feature vectors are modeled by convex combinations of observation vectors. In the paper, we propose to express the factorization model in terms of the sum of rank-1 matrices. Then the sparse factors can be easily estimated by applying the concept of the Hierarchical Alternating Least Squares (HALS) algorithm which is still regarded as one of the m...
متن کاملQuantized nonnegative matrix factorization
Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...
متن کاملQuadratic nonnegative matrix factorization
In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2014
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2014/154942